

External Training Course

Electrical Distribution Systems

From 20 Oct. To 24 Oct. 2025 From 24 Nov. To 28 Nov. 2025 From 15 Dec. To 19 Dec. 2025

Marriot Marble Arch Hotel, London, UK

Mr. Ghanem F. Al-Otaibi
GM & Institute Owner

Tel.: 00965 22248901 Fax: 00965 22204999 Mob.: 00965 65548855 Mob.: 00965 97273712

W/SITE: WWW.AGI-KW.COM

Tel. 00965 - 22248901 Mob. 00965 - 65548855 Email admin@agi-kw.com W/Site www.agi-kw.com

External Training Course:

Electrical Distribution Systems

From 20 Oct. To 24 Oct. 2025 Fees: 1950 KD From 24 Nov. To 28 Nov. 2025 Fees: 1950 KD From 15 Dec. To 19 Dec. 2025 Fees: 1950 KD

Course Overview

This comprehensive 5-day training program provides participants with a solid and practical understanding of Electrical Distribution Systems — from design principles and system components to operation, protection, and modern automation. The course presents an integrated approach to the planning, analysis, and management of low- and medium-voltage distribution networks used in industrial facilities, utilities, and smart infrastructure. Through a mix of theoretical sessions, engineering calculations, and real-world case studies, participants will develop the knowledge and skills necessary to design efficient, reliable, and cost-effective electrical distribution systems that meet modern power quality and reliability standards.

Course Objectives

By the end of this course, participants will be able to:

- Understand the structure, components, and configurations of electrical distribution systems.
- Analyze and design distribution feeders, substations, and transformers for optimal performance.
- Calculate voltage drops, power losses, and load flows within various network layouts.
- Apply effective methods for voltage regulation and reactive power compensation.
- Evaluate and improve system reliability and power quality.
- Implement protection schemes and select appropriate protective devices.
- Utilize automation and SCADA systems for monitoring and control.
- Integrate distributed generation and renewable energy sources into existing networks.
- Develop strategies to optimize efficiency, safety, and sustainability in distribution operations.

Target Audience

This course is specifically designed for:

- Electrical, power, and design engineers.
- Utility engineers and maintenance personnel.
- Plant electrical supervisors and project engineers.
- Consultants and technical professionals in power systems.
- Engineers involved in network design, load analysis, and protection coordination.
- Energy auditors, reliability engineers, and technical trainers.

Tel. 00965 - 22248901 Mob. 00965 - 65548855 Email admin@agi-kw.com W/Site www.agi-kw.com

Training Methodology

The program combines interactive lectures, analytical exercises, and case studies to ensure effective learning. Training methods include:

- Instructor-led presentations with illustrated diagrams.
- Practical calculation workshops and software demonstrations.
- Real case studies from utilities and industrial networks.
- Group discussions and problem-solving exercises.
- Illustrated technical manuals and best-practice guidelines for reference.

Organizational Impact

Upon completion, participating organizations will benefit through:

- Improved system reliability and operational efficiency.
- Reduced power losses and enhanced voltage regulation.
- Optimized equipment performance and reduced maintenance costs.
- Strengthened technical expertise within engineering teams.
- Better planning for future system expansion and modernization.
- Enhanced compliance with power quality and safety standards.

Personal Impact

Participants will:

- Strengthen their technical skills in distribution design and operation.
- Gain hands-on experience in analyzing and optimizing real systems.
- Develop expertise in protection coordination and automation.
- Learn advanced diagnostic, monitoring, and optimization techniques.
- Build confidence to solve complex field and design challenges.
- Gain updated knowledge aligned with international engineering practices.

Course Content & Outline

Day 1 – Overview & Fundamentals of Electrical Distribution Systems

- Introduction to the electric power system: generation, transmission, and distribution.
- Role and importance of distribution systems in the power supply chain.
- Classification of distribution systems: radial, loop, network, and ring main.
- Key components: feeders, substations, transformers, service mains, and distribution cables.
- Load characteristics and demand patterns.
- Standards, codes, and safety practices in distribution engineering.
- Case study: Comparison between industrial and utility distribution systems.

Tel. 00965 - 22248901 Mob. 00965 - 65548855 Email admin@agi-kw.com W/Site www.agi-kw.com

Day 2 – Feeder Design, Load Analysis & Transformer Applications

- Distribution feeder configurations and conductor selection criteria.
- Voltage drop and line loss calculations.
- Load estimation, diversity and coincidence factors, and demand profiles.
- Transformer selection, connection methods, and voltage regulation.
- Load balancing and phase current management.
- Energy loss reduction and efficiency improvement.
- Workshop: Load flow and voltage profile calculation for a sample feeder.

Day 3 – Power Quality, Voltage Control & Reactive Compensation

- Definition and importance of power quality in distribution networks.
- Common power quality issues: harmonics, flicker, unbalance, sags, and swells.
- Voltage control methods: tap changers, voltage regulators, and capacitor banks.
- Power factor correction and reactive power management.
- Selection and placement of shunt capacitors.
- · Harmonic filtering and mitigation methods.
- Case study: Improving power factor and voltage profile in an industrial network.

Day 4 - System Protection, Reliability & Automation

- Protection principles and device coordination in distribution systems.
- Types of protective devices: fuses, relays, circuit breakers, reclosers, and isolators.
- Fault detection, isolation, and service restoration.
- Reliability indices: SAIFI, SAIDI, CAIDI, and system availability.
- Reliability-centered maintenance (RCM) strategies.
- SCADA, monitoring systems, and remote control.
- Distribution automation and intelligent grid technologies.
- Workshop: Coordination study and fault analysis exercise.

Day 5 – Modern Trends, Smart Grids & Optimization Strategies

- Distributed generation (DG) and renewable integration.
- Microgrids and energy storage in distribution systems.
- Smart grid technologies and digital substations.
- Communication networks and data analytics for distribution systems.
- Planning, expansion, and system optimization methodologies.
- Economic and environmental considerations in modern networks.
- Case study: Design of a smart distribution system with DG integration.
- Final group workshop and assessment session.

Tel. 00965 - 22248901 Mob. 00965 - 65548855 Email admin@agi-kw.com W/Site www.agi-kw.com

Course Agenda:

(1st Day) Agenda

8.30	9.00	Opening Remarks (30 Min.).
9.00	11.30	 Overview & Fundamentals of Electrical Distribution Systems: Introduction to the electric power system: generation, transmission, and distribution. Role and importance of distribution systems in the power supply chain. Classification of distribution systems: radial, loop, network, and ring main. Key components: feeders, substations, transformers, service mains, and distribution cables.
11.30	12.00	Coffee Break
12.00	14.00	 Overview & Fundamentals of Electrical Distribution Systems: Load characteristics and demand patterns. Standards, codes, and safety practices in distribution engineering. Case study: Comparison between industrial and utility distribution systems.
14.00	14.30	Questions and Discussion
14.30		Buffet Lunch

(2nd Day) Agenda

9.00	11.30	 Feeder Design, Load Analysis & Transformer Applications: Distribution feeder configurations and conductor selection criteria. Voltage drop and line loss calculations. Load estimation, diversity and coincidence factors, and demand profiles.
11.30	12.00	Transformer selection, connection methods, and voltage regulation. Coffee Break
12.00	14.00	 Feeder Design, Load Analysis & Transformer Applications: Load balancing and phase current management. Energy loss reduction and efficiency improvement. Workshop: Load flow and voltage profile calculation for a sample feeder.
14.00	14.30	Questions and Discussion
14.30		Buffet Lunch

Tel. 00965 - 22248901 Mob. 00965 - 65548855 Email admin@agi-kw.com W/Site www.agi-kw.com

(3rd Day) Agenda

9.00	11.30	Power Quality, Voltage Control & Reactive Compensation:
		 Definition and importance of power quality in distribution networks.
		Common power quality issues: harmonics, flicker, unbalance, sags, and swells.
		Voltage control methods: tap changers, voltage regulators, and capacitor banks.
		Power factor correction and reactive power management.
11.30	12.00	Coffee Break
12.00	14.00	Power Quality, Voltage Control & Reactive Compensation:
		Selection and placement of shunt capacitors.
		Harmonic filtering and mitigation methods.
		Case study: Improving power factor and voltage profile in an industrial network.
14.00	14.30	Questions and Discussion
14.30		Buffet Lunch

(4th Day) Agenda

9.00	11.30	System Protection, Reliability & Automation:
		Protection principles and device coordination in distribution systems.
		Types of protective devices: fuses, relays, circuit breakers, reclosers, and isolators.
		Fault detection, isolation, and service restoration.
		Reliability indices: SAIFI, SAIDI, CAIDI, and system availability.
11.30	12.00	Coffee Break
12.00	14.00	System Protection, Reliability & Automation:
		Reliability-centered maintenance (RCM) strategies.
		SCADA, monitoring systems, and remote control.
		Distribution automation and intelligent grid technologies.
		Workshop: Coordination study and fault analysis exercise.
14.00	14.30	Questions and Discussion
14.30		Buffet Lunch

(5th Day) Agenda

		Modern Trends, Smart Grids & Optimization Strategies:
		Distributed generation (DG) and renewable integration.
9.00	11.30	Microgrids and energy storage in distribution systems.
		Smart grid technologies and digital substations.
		Communication networks and data analytics for distribution systems.
11.30	12.00	Coffee Break
		Modern Trends, Smart Grids & Optimization Strategies:
12.00	14.00	Planning, expansion, and system optimization methodologies.
		Economic and environmental considerations in modern networks.
		Case study: Design of a smart distribution system with DG integration.
		Final group workshop and assessment session.
14.00	14.30	Questions, Discussion & Conclusion Training Course.
14.30		Buffet Lunch